Cambridge Water Demand Management Options Updates						
Project no.:	2664	Date:	19/07/2024			
Author(s):	Dave Gough	Email:	dave.gough@artesia- consulting.co.uk			
Reviewed by: Daniele Di Fiore Reference: AR1536						

1 Introduction

Following our previous project (2551) which produced a suite of demand management options (DMO) in support of Cambridge Water's dWRMP submission in 2021, you have approached us to revisit this work and consider:

- A range of new pathways and scenarios which will reflect updated regulatory targets of the Environment Act and;
- Provide alignment of demand management options for WRMP24.

We have taken the requirements of the new scenarios into account and adjusted targets accordingly to allow further assessment of the capacity of DMOs against new criteria.

We have run the demand management options through our optimiser to produce a leastcost suite of options to achieve the updated regulatory targets for household, nonhousehold and leakage demand reduction.

2 PCC Scenarios

In our previous project we considered three PCC pathways in this project, based on low, medium and high levels of ambition for PCC reduction by 2050. In this project we are looking at the following PCC pathway:

Table 1. PCC pathway

Scenario Ref	Name	Description
PCC_01	PCC	122 l/h/d by 2038, 110 l/h/d by 2050

3 Smart Networks Scenarios

Smart network plans are a key enabler in delivering options in the WRMP. The implementation of smart networks (including household smart metering) will provide a platform for data driven insights, which will enable increased efficiency for PCC, leakage and non-household consumption reductions.

For example, smart meter data will drive greater efficiency for water efficiency home visits, as the properties with most opportunity for saving can be targeted, rather than adopting an unfocused approach based on geographical area.

From our discussions with you, we have explored Smart Networks rollout scenarios in AMP8 and AMP 9, as shown in Table 2.

Table 2.	Smart	Network	Scenarios
----------	-------	---------	-----------

Scenario Ref	Name	Description	
SN_01	AMP_8	Smart Network Rollout in AMP 8	
SN_02	AMP_9	Smart Network Rollout in AMP 9	

4 Water Labelling Scenarios

Water labelling has been identified as having a significant impact on demand reduction through reduced PCC and although out of Cambridge Water's control, the government has announced that it will introduce water labelling from 2025. However, the extent of a water labelling scheme and its criteria have yet to be finalised

After discussions with Cambridge Water, and with consideration given to the uncertainty around water labelling inception dates, we have used 'low' savings and not 'mid' savings previously applied. We have also agreed with Cambridge Water to provide scenarios which apply a delayed start to the water labelling scheme. Table 3 shows a breakdown of scenarios considered.

Table 3	Water	Labelling	Scenarios
---------	-------	-----------	-----------

Scenario Ref	Name	Description
WL_01	WL_with_min_stds	Water with minimum standards (higher impact on demand reduction)

Technical note

WL_02	WL_with_no_min_stds	Water labelling without minimum standards (lower impact on demand reduction)
WL_03	No_WL	No water label introduced (no impact on demand reduction)
WL_04	WL_with_min_stds (delayed)	Water labelling with minimum standards start date delayed to 2028/29
WL_05	WL_with_no_min_stds (delayed)	Water labelling without minimum standards, start date delayed to 2028/29

5 Non-household target methodology

After discussions with Cambridge Water, we have identified three different non-household scenarios, which are depicted in the Table 4 below.

Table 4 –	NHH	method	description
-----------	-----	--------	-------------

Scenario Ref	Description
Method_1	The target value in 2037 is the base year (2019/20) value reduced by 9%. In 2049/50 the target value is the base year value reduced by 15%. A linear interpolation is used to join these points, with the target remaining constant beyond 2049/50.
Method_2	The target value is a calculated as a percentage reduction of the baseline. A 9% reduction of the baseline in 2037/38 and 15% in 2049/50. The percentage reduction is linearly interpolated and applied to the baseline, remaining at 15% beyond 2050.
Method_3	The target value in 2037/38 is calculated as the baseline value subtract 9% of the base year (2019/20) value. The 2049/50 target value is the baseline subtract 15% of the base year value. A linear interpolation is used to join these point, interpolating to a 15% reduction at the end of the timeline (2100)

6 Leakage Scenarios

The Environment Act (Env act) sets a target for water companies to cut leaks by 50% by 2050, from a baseline of 2017/18. To achieve this, Cambridge Water have outlined a glidepath (Scenario 2) with interim targets for the CAM region, but also explored different scenarios depicted below in Table 5.

Table 5. Leakage Scenarios

Scenario Ref	Description
Scenario_01	50% leakage reduction by March 2050 (no interim targets)
Scenario_02	All environmental targets met, including interim
Scenario_o3	20% reduction by AMP 8, plus Env act targets
Scenario_04	50% by 2035 and then sustained
Scenario_05	50% by 2040 and then sustained

7 Outputs

We have provided the outputs separately to this report, as markdowns, csv's, and plots. These documents include cumulative and year figures for all options.

8 D4 uncertainty

In order to calculate the final plan headroom, you require the uncertainty for the demand management (household and non-household) options, which are fed into the D4 component of headroom.

8.1 **Option uncertainty estimate**

We identified upper and lower uncertainty for each option identified based on available data and information and using expert judgment. The upper and lower uncertainties are detailed in Table 6 below.

Technical note

Table 6 Upper and lower uncertainty by option

Refe	Category	Name	Upper	Lower	Rationale
e			intv (%)	ntv (%)	
2021	HH	Community RWH	10	20	some uncertainties on the
-002					effectiveness of these
2021	нн	Home retrofit	10	20	programmes
-075		RWH/GWR	10	20	effectiveness of these
					programmes
2021	НН	Increased media	5	5	
-076		campaigns and			
2021	НН	New homes	3	3	good evidence that these projects
-077		standards -	5	5	can be implemented on new
		voluntary			properties
2021	НН	Targeting	5	5	good level of industry data around
-090		efficiency audits			water efficiency addit savings
		(with smart			
		metering)			
2021	HH	Water Neutrality	10	15	
-006		(with smart metering)			
2021	НН	Community Water	8	10	Uncertainty around customer
-093		Efficiency Scheme			engagement and participation
		(with smart			
2021	ЦЦ	Housing	10	10	uncertainty due to unknowns
-036		Associations -	10	10	around current status of efficiency
		targeted			at these properties
		programme			
2021	НН	Targeting	8	8	Increased uncertainty due to
-091		efficiency audits			lack of smart metering impacting
		(without smart			effective targeting.
		metering)			
2021	HH	Water Neutrality	15	15	
-094		metering)			
2021	HH	Community Water	15	20	uncertainty due to lack of detailed
-095		Efficiency Scheme			evidence these schemes
		(without smart			
2021	НН	Water Efficiency	3	3	good evidence on these
-096		Online	J	J	campaigns
		Questionnaire and			
2025		product dispatch	10	45	
-012	пн	efficiency	10	15	
		programme			
		(Partnering			
		approach, home			

Technical note

2021 -048	НН	Innovative tariffs	10	15	Not a huge amount of data on Tariffs
2021 -013	NHH	Non-household water efficiency programme (Company led, self-install)	10	15	
2021 -015	NHH	Non-household water efficiency programme (Company led, site visit with installation)	10	15	
2021 -114	NHH	Retailer Incentive Mechanism	5	15	Lack of direct evidence on these schemes
2021 -116	NHH	NHH Enhanced Meter Technology	5	5	
2021 -121	NHH	Water Audits Retail - non process (non-SN)	10	15	
2021 -117	NHH	Metering of Leftover Commercials	3	5	good level of industry data around watersavings following meter installation

8.2 <u>D4 component methodology</u>

Taking the other components as an example, uncertainties are represented as a loss of source. It is important that the D₄ components follows the same rules.

The demand options are given in terms of a yield, (or water saved). Therefore, the whole bundle of household and non-household options selected in each scenario gives the total yield saved by the company per year. In the previous sections we described how to calculate upper and lower yield for each selected option. Subsequently, we can also calculate the lower and upper scenarios for the whole bundle of selected demand options.

The lower and upper scenarios constrain the amount of water that can be saved, representing the minimum and maximum yield. However, the uncertainties need to be centred around o, so the first step is to normalise the distributions. The uncertainties need to be thought of as *losses*. So, if we expect a yield of 7.5, but get 5, we have *lost 2.5 M/ld*. Therefore, the maximum loss is 2.5 Ml/d. Similarly, if we expect 7.5 Ml/d and get 11.5, we have *lost -4.0 Ml/d*, so the minimum loss is -4 Ml/d. It is this negative loss which actually represents the gain in water.

This convention is consistent among the other components and ensures the correct output. One example is given in the following table.

Technical note

Table 7 Example D4 uncertainty

	Yield (Ml/d)				Uncertainties (Triangular distributions centred around o)		
	Min	Central	Max	Γ	Min	Central	Max
D4 Demand options	5	7.5	11.5		-4	0	2.5
		Uncer	tainty in 1	tern	ns of <i>los</i> :	s of vield	

By using the high, low, and central yields for selected demand option bundle, as identified in the option work, we then build a triangular distribution around the central figures. This is consistent with best practice.

8.3 <u>Results</u>

The results for the D₄ component have been provided as separate excel files, which detail min, max, central (mode) and percentiles for all the scenarios described in this document, with the exception of no water labelling.